Swedish researchers have developed a novel way to manufacture micro supercapacitors, also known as system-on-a-chip, so they are compatible with other components in system circuits and can be easily tailored for different uses.

Supercapacitors, an increasingly competitive area of research, could revolutionize the way we use batteries by extending their lifespans and enabling extremely fast charging. But given that they need to be same size as the batteries they are connected to, supercapacitors are often too large for most applications in consumer electronics or electric cars.

Now, researchers at Chalmers University of Technology in Sweden have developed a method that represents a potential breakthrough in the production of micro supercapacitors. The method addresses one of the main challenges – their compatibility with other components in a system circuit.

The researchers have developed micro supercapacitors, also known as system-on-a-chip, which are so small that they can fit on the system circuits that control various functions in mobile phones, computers, electric motors, and most consumer electronics goods. They have demonstrated a manufacturing process in which micro supercapacitors are integrated with the most common way to manufacture system circuits: complementary metal-oxide-semiconductor (CMOS).

“We used a method known as spin coating, a cornerstone technique in many manufacturing processes. This allows us to choose different electrode materials,” says Agin Vyas, a doctoral student in the microtechnology and nanoscience department at Chalmers University of Technology. “We also use alkylamine chains in reduced graphene oxide, to show how that leads to a higher charging and storage capacity.”

Micro supercapacitors fabricated through spin coating graphene-oxide often suffer from insufficient electrode thicknesses, leading to low energy densities. However, the researchers have addressed this by using the alkylamine chains for enhanced electrode thickness, high capacitance, and lower series resistance. They said the method is scalable and reduces manufacturing costs.

In addition, the researchers have developed a method to produce micro supercapacitors of up to 10 different materials in one unified manufacturing process. This means that properties can be easily tailored to suit several different end applications.

Their research paper, “Alkyl-Amino Functionalized Reduced-Graphene-Oxide–heptadecan-9-amine-Based Spin-Coated Microsupercapacitors for On-Chip Low Power Electronics,” was recently published in Physica Status Solidi B.